## 12-Bit, Low Cost, Monolithic D/A Converter

The HI-DAC80V is a monolithic direct replacement for the popular DAC80 and AD DAC80. Single chip construction along with several design innovations make the HI-DAC80V the optimum choice for low cost, high reliability applications. Intersil' unique Dielectric Isolation (DI) processing reduces internal parasitics resulting in fast switching times and minimum glitch. On board span resistors are provided for good tracking over temperature, and are laser trimmed to high accuracy.

Internally the HI-DAC80V eliminates code dependent ground currents by routing current from the positive supply to the internal ground node, as determined by an auxiliary R2R ladder. This results in a cancellation of code dependent ground currents allowing virtually zero variation in current through the package common, pin 21.

The HI-DAC80V is available as a voltage output device which is guaranteed over the $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ temperature range. It includes a buried zener reference featuring a low temperature coefficient as well as an on board operational amplifier. The HI-DAC80V requires only two power supplies and will operate in the range of $\pm(11.4 \mathrm{~V}$ to 16.5 V$)$.

## Ordering Information

| PART NUMBER | TEMP. RANGE <br> $\left({ }^{\circ} \mathbf{C}\right)$ | PACKAGE | PKG. NO. |
| :--- | :---: | :--- | :--- |
| HI3-DAC80V-5 | 0 to 75 | 24 Ld PDIP | E24.6 |

## Features

- DAC 80V Alternative Source
- Monolithic Construction
- Fast Settling Time (Typ) . . . . . . . . . . . . . . . . . . . . . . $1.5 \mu \mathrm{~s}$
- Guaranteed Monotonicity
- Wafer Laser Trimmed Linearity, Gain, Offset
- Span Resistors On-Chip
- On-Board Reference
- Supply Operation $\pm 12 \mathrm{~V}$


## Applications

- High Speed A/D Converters
- Precision Instrumentation
- CRT Display Generation


## Pinout



Functional Block Diagram


| Absolute Maximum Ratings |  |
| :---: | :---: |
| Power Supply Inputs |  |
| + $\mathrm{V}_{\text {S }}$. | +20V |
| - $\mathrm{V}_{\text {S }}$ | -20V |
| Reference |  |
| Input (Pin 16) | $+\mathrm{V}_{\text {S }}$ |
| Output Drain. | 2.5 mA |
| Digital Inputs (Bits 1 to 12). | -1 V to $+\mathrm{V}_{\text {S }}$ |

## Operating Conditions

Temperature Range $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

## Thermal Information

| Thermal Resistance (Typical, Note 1) | $\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ |
| :---: | :---: |
| PDIP Package | 55 |
| Maximum Power Dissipation |  |
| PDIP Package | 550 mW |
| Maximum Junction Temperature | . $150^{\circ} \mathrm{C}$ |
| Maximum Storage Temperature Range. | $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |
| Maximum Lead Temperature (Soldering 10s) | $300^{\circ} \mathrm{C}$ |
| Die Characteristics |  |

Die Characteristics
Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bipolar-DI
Transistor Count. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:

1. $\theta_{J A}$ is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

Electrical Specifications $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}} \pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ (Note 5), Pin 16 Shorted to Pin 24, Unless Otherwise Specified

| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SYSTEM PERFORMANCE |  |  |  |  |  |
| Resolution |  | - | - | 12 | Bits |
| ACCURACY (Note 3) |  |  |  |  |  |
| Linear Error | Full Temperature | - | $\pm 1 / 4$ | $\pm 1 / 2$ | LSB |
| Differential Linearity Error | Full Temperature | - | $\pm 1 / 2$ | $\pm{ }^{3 / 4}$ | LSB |
| Monotonicity | Full Temperature | Guaranteed |  |  |  |
| Gain Error | Full Temperature (Notes 2, 4) | - | $\pm 0.1$ | $\pm 0.3$ | \% FSR |
| Offset Error | Full Temperature (Note 2) |  | $\pm 0.05$ | $\pm 0.15$ | \% FSR |
| ANALOG OUTPUT |  |  |  |  |  |
| Output Ranges (See Figure 2 and Table 2) |  | - | $\pm 2.5$ | - | V |
|  |  | - | $\pm 5$ | - | V |
|  |  | - | $\pm 10$ | - | V |
|  |  | - | 0 to 5 | - | V |
|  |  | - | 0 to 10 | - | V |
| Output Current |  | $\pm 5$ | - | - | mA |
| Output Resistance |  | - | 0.05 | - | $\Omega$ |
| Short Circuit Duration | To Common | Continuous |  |  | - |
| DRIFT (Note 3) |  |  |  |  |  |
| Total Bipolar Drift (Includes Gain, Offset and Linearity Drifts) | Full Temperature | - | - | $\pm 20$ | ppm/ ${ }^{\circ} \mathrm{C}$ |
| Total Error |  |  |  |  | \% FSR |
| Bipolar | Full Temperature (Note 6) | - | $\pm 0.06$ | $\pm 0.1$ | \% FSR |
| Gain | With Internal Reference | - | $\pm 15$ | $\pm 30$ | ppm/ ${ }^{\circ} \mathrm{C}$ |
|  | Without Internal Reference | - | $\pm 7$ | - | ppm/ ${ }^{\circ} \mathrm{C}$ |


| Electrical Specifications $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S} \pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ (Note 5), Pin 16 Shorted to Pin 24, Unless Otherwise Specified (Continued) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNITS |
| Unipolar Offset |  | - | $\pm 1$ | $\pm 3$ | ppm/ ${ }^{\circ} \mathrm{C}$ |
| Bipolar Offset |  | - | $\pm 5$ | $\pm 10$ | ppm/ ${ }^{\circ} \mathrm{C}$ |
| CONVERSION SPEED |  |  |  |  |  |
| Settling Time <br> With 10K Feedback | Full Scale Transition All Bits ON to OFF or OFF to ON to $\pm 0.01 \%$ or FSR (Note 3) | - | 3 | - | $\mu \mathrm{s}$ |
| With 5K Feedback |  | - | 1.5 | - | $\mu \mathrm{s}$ |
| For 1 LSB Change |  | - | 1.5 | - | $\mu \mathrm{s}$ |
| Slew Rate |  | 10 | 15 | - | V/us |
| INTERNAL REFERENCE |  |  |  |  |  |
| Output Voltage |  | 6.250 | +6.3 | 6.350 | V |
| Output Impedance |  | - | 1.5 | - | $\Omega$ |
| External Current |  | - | - | +2.5 | mA |
| Tempco of Drift |  | - | 5 | - | $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| DIGITAL INPUT (Note 2) |  |  |  |  |  |
| Logic Levels Logic "1" | TTL Compatible At $+1 \mu \mathrm{~A}$ | +2 | - | +5.5 | V |
| Logic "0" | TTL Compatible At -100 $\mu \mathrm{A}$ | 0 | - | +0.8 | V |
| POWER SUPPLY SENSITIVITY (Notes 3, 5) |  |  |  |  |  |
| +15V Supply |  | - | 0.001 | 0.002 | \% FSR / \%V $\mathrm{V}_{\text {S }}$ |
| -15V Supply |  | - | 0.001 | 0.002 | \% FSR / \%VS |
| POWER SUPPLY CHARACTERISTICS (Note 5) |  |  |  |  |  |
| Voltage Range $+V_{S}$ | Full Temperature | +11.4 | +15 | +16.5 | V |
| $-\mathrm{V}_{S}$ | Full Temperature | -11.4 | -15 | -16.5 | V |
| Current $+1 s$ | Full Temperature, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ | - | +12 | +15 | mA |
| - ${ }^{\text {s }}$ | Full Temperature, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ | - | -15 | -20 | mA |

## NOTES:

2. Adjustable to zero using external potentiometers.
3. See Definitions.
4. FSR is "Full Scale Range: and is 20 V for $\pm 10 \mathrm{~V}$ range, 10 V for $\pm 5 \mathrm{~V}$ range, etc.
5. The HI-DAC80V will operate with supply voltages as low as $\pm 11.4 \mathrm{~V}$. It is recommended that output voltage range -10 V to +10 V not be used if the supply voltages are less than $\pm 12.5 \mathrm{~V}$.
6. With Gain and Offset errors adjusted to zero at $25^{\circ} \mathrm{C}$.

## Definitions of Specifications

## Digital Inputs

The HI-DAC80V accepts digital input codes in complementary binary, complementary offset binary, and complementary two's complement binary.

## Settling Time

That interval between application of a digital step input, and final entry of the analog output within a specified window about the settled value. Intersil Corporation usually specifies a unipolar 10 V full scale step, to be measured from $50 \%$ of the input digital transition, and a window of $\pm 1 / 2 \mathrm{LSB}$ about the final value. The device output is then rated according to the worst (longest settling) case: low to high, or high to low. In a 12 -bit system $\pm \frac{1}{2}$ LSB $= \pm 0.012 \%$ of FSR.

TABLE 1.

|  | ANALOG OUTPUT |  |  |
| :---: | :---: | :---: | :---: |
| DIGITAL <br> INPUT | COMPLE- <br> MENTARY <br> STRAIGHT <br> BINARY | COMPLE- <br> MENTARY <br> OFFSET <br> BINARY | COMPLE- <br> MENTARY <br> TWO'S <br> COMPLEMENT $\dagger$ |
| MSB...LSB |  |  |  |
| $000 \ldots 000$ | + Full Scale | + Full Scale | -LSB |
| $100 \ldots 000$ | Mid Scale-1 LSB | -1 LSB | + Full Scale |
| $111 \ldots 111$ | Zero | - Full Scale | Zero |
| $011 \ldots 111$ | $+1 / 2$ Full Scale | Zero | - Full Scale |

$\dagger$ Invert MSB with external inverter to obtain CTC Coding.

## Thermal Drift

Thermal drift is based on measurements at $25^{\circ} \mathrm{C}$, at high $\left(\mathrm{T}_{\mathrm{H}}\right)$ and low ( $\mathrm{T}_{\mathrm{L}}$ ) temperatures. Drift calculations are made for the high $\left(\mathrm{T}_{H}-25^{\circ} \mathrm{C}\right)$ and low $\left(25^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{L}}\right)$ ranges, and the larger of the two values is given as a specification representing worst case drift.
Gain Drift, Offset Drift, Reference Drift and Total Bipolar Drift are calculated in parts per million per ${ }^{\circ} \mathrm{C}$ as follows:

GainDrift $=\frac{\Delta \mathrm{FSR} / \Delta^{\circ} \mathrm{C}}{\mathrm{FSR}} \times 10^{6}$
OffsetDrift $=\frac{\Delta \text { Offset } / \Delta^{\circ} \mathrm{C}}{\text { FSR }} \times 10^{6}$
ReferenceDrift $=\frac{\Delta \mathrm{V}_{\text {REF }} /\left(\Delta^{\circ} \mathrm{C}\right)}{\mathrm{V}_{\text {REF }}} \times 10^{6}$
TotalBipolarDrift $=\frac{\Delta \mathrm{V}_{\mathrm{O}} /\left(\Delta^{\circ} \mathrm{C}\right)}{\mathrm{FSR}} \times 10^{6}$
NOTE: FSR = Full Scale Output Voltage - Zero Scale Output Voltage.
$\Delta \mathrm{FSR}=\mathrm{FSR}\left(\mathrm{T}_{\mathrm{H}}\right)-\mathrm{FSR}\left(25^{\circ} \mathrm{C}\right)$,
or FSR $\left(25^{\circ} \mathrm{C}\right)$ - FSR ( $\mathrm{T}_{\mathrm{L}}$ ).
$\mathrm{V}_{\mathrm{O}}=$ Steady State response to any input code.

Total Bipolar Drift (TBD) is the variation of output voltage with temperature, in the bipolar mode of operation. It represents the net effect of drift in Gain, Offset, Linearity and Reference Voltage. Total Bipolar Drift values are calculated, based on measurements as explained above. Gain and Offset need not be calibrated to zero at $25^{\circ} \mathrm{C}$. The specified limits for TBD apply for any input code and for any power supply setting within the specified operating range.

## Accuracy

Linearity Error (Short for "Integral Linearity Error." Also, sometimes called "Integral Nonlinearity" and "Nonlinearity".) The maximum deviation of the actual transfer characteristic from an ideal straight line. The ideal line is positioned according to end-point linearity for D/A converter products from Intersil Corporation, i.e., the line is drawn between the end-points of the actual transfer characteristic (codes 00... 0 and 11...1).
Differential Linearity Error The difference between one LSB and the output voltage change corresponding to any two consecutive codes. A Differential Nonlinearity of $\pm 1$ LSB or less guarantees monotonicity.

Monotonicity The property of a D/A converter's transfer function which guarantees that the output derivative will not change sign in response to a sequence of increasing (or decreasing) input codes. That is, the only output response to a code change is to remain constant, increase for Increasing code, or decrease for decreasing code.
Total Error The net output error resulting from all internal effects (primarily non-ideal Gain, Offset, Linearity and Reference Voltage). Supply voltages may be set to any values within the specified operating range. Gain and offset errors must be calibrated to zero at $25^{\circ} \mathrm{C}$. Then the specified limits for Total Error apply for any input code and for any temperature within the specified operating range.

## Power Supply Sensitivity

Power Supply Sensitivity is a measure of the change in gain and offset of the D/A converter resulting from a change in $-\mathrm{V}_{\mathrm{S}}$, or $+\mathrm{V}_{\mathrm{S}}$ supplies. It is specified under DC conditions and expressed as full scale range percent of change divided by power supply percent change.

PSS $=\frac{\frac{\Delta \text { FullScaleRange } \times 100}{\text { FSR }(\text { Nominal })}}{\frac{\Delta \mathrm{V}_{\mathrm{S}} \times 100}{\mathrm{~V}_{\mathrm{S}}(\text { Nominal })}}$

## Glitch

A glitch on the output of a D/A converter is a transient spike resulting from unequal internal ON-OFF switching times. Worst case glitches usually occur at half-scale, i.e., the major carry code transition from $011 \ldots 1$ to $100 \ldots 0$ or vice versa. For example, if turn ON is greater than OFF for $011 \ldots 1$ to $100 \ldots 0$, an intermediate state of $000 \ldots 0$ exists, such that, the output momentarily glitches toward zero
output. Matched switching times and fast switching will reduce glitches considerably. (Measured as one half the Product of duration and amplitude.)

## Decoupling and Grounding

For best accuracy and high frequency performance, the grounding and decoupling scheme shown in Figure 1 should be used. Decoupling capacitors should be connected close to the HI-DAC80V (preferably to the device pins) and should be tantalum or electrolytic bypassed with ceramic types for best high frequency noise rejection.


FIGURE 1.

## Reference Supply

An internal 6.3 V reference is provided on board the HI-DAC80V. The voltage (pin 24) is accurate to $\pm 0.8 \%$ and must be connected to the reference input (pin 16) for specified operation. This reference may be used externally, provided current drain is limited to 2.5 mA . An external buffer amplifier is recommended if this reference is to be used to drive other system components. Otherwise, variations in the load driven by the reference will result in gain variations of the HI-DAC80V. All gain adjustments should be made under constant load conditions.

## Output Voltage Ranges



FIGURE 2. HI-DAC80V

TABLE 2. RANGE CONNECTIONS

|  |  | CONNECT |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | RANGE | PIN 15 | PIN 17 | PIN 19 |
|  | 0 to +5 V | 18 | NC | 20 |
|  | 0 to +10 V | 18 | NC | NC |
| Bipolar | $\pm 2.5 \mathrm{~V}$ | 18 | 20 | 20 |
|  | $\pm 5 \mathrm{~V}$ | 18 | 20 | NC |
|  | $\pm 10 \mathrm{~V}$ | 19 | 20 | 15 |

TABLE 3. GAIN AND OFFSET CALIBRATIONS

| UNIPOLAR CALIBRATION |  |
| :---: | :---: |
| Step 1: | $\begin{aligned} & \text { Offset } \\ & \text { Turn all bits OFF }(11 \ldots \text { 1) } \\ & \text { Adjust R2 for OV out } \end{aligned}$ |
| Step 2: | Gain <br> Turn all bits ON (00 . . 0) Adjust R1 for FS - 1 LSB That is: 4.9988 for 0 to +5 V range 9.9976 for 0 to +10 V range |
| BIPOLAR CALIBRATION |  |
| Step 1: | Offset <br> Turn all bits OFF (11 . . . 1) <br> Adjust R2 for Negative FS That is: <br> -10 V for $\pm 10 \mathrm{~V}$ range -5 V for $\pm 5 \mathrm{~V}$ range -2.5 V for $\pm 2.5 \mathrm{~V}$ range |
| Step 2: | Gain <br> Turn all bits ON (00 . . . 0) Adjust R1 for Positive FS - 1 LSB That is: +9.9951 V for $\pm 10 \mathrm{~V}$ Range +4.9976 V for $\pm 5 \mathrm{~V}$ Range +2.4988 V for $\pm 2.5 \mathrm{~V}$ Range |
| This Bipolar procedure adjusts the output range end points. The maximum error at zero (half scale) will not exceed the Linearity Error. See the "Accuracy" Specifications. |  |

## Die Characteristics

DIE DIMENSIONS
108 mils $\times 163$ mils
METALLIZATION
Type: AI
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$

TIE SUBSTRATE TO
Ground

## PASSIVATION

Type: Nitride over Silox
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA$ Silox Thickness: $12 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$

## Metallization Mask Layout



## Dual-In-Line Plastic Packages (PDIP)


-B-


NOTES:

1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions $A, A 1$ and $L$ are measured with the package seated in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch ( 0.25 mm ).
6. $E$ and $\mathrm{e}_{\mathrm{A}}$ are measured with the leads constrained to be perpendicular to datum $-\mathrm{C}-$.
7. $e_{B}$ and $e_{C}$ are measured at the lead tips with the leads unconstrained. $\mathrm{e}_{\mathrm{C}}$ must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch $(0.25 \mathrm{~mm})$.
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch ( $0.76-1.14 \mathrm{~mm}$ ).

## E24.6 (JEDEC MS-011-AA ISSUE B) 24 LEAD DUAL-IN-LINE PLASTIC PACKAGE

| SYMBOL | INCHES |  | MILLIMETERS |  | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |  |
| A | - | 0.250 | - | 6.35 | 4 |
| A1 | 0.015 | - | 0.39 | - | 4 |
| A2 | 0.125 | 0.195 | 3.18 | 4.95 | - |
| B | 0.014 | 0.022 | 0.356 | 0.558 | - |
| B1 | 0.030 | 0.070 | 0.77 | 1.77 | 8 |
| C | 0.008 | 0.015 | 0.204 | 0.381 | - |
| D | 1.150 | 1.290 | 29.3 | 32.7 | 5 |
| D1 | 0.005 | - | 0.13 | - | 5 |
| E | 0.600 | 0.625 | 15.24 | 15.87 | 6 |
| E1 | 0.485 | 0.580 | 12.32 | 14.73 | 5 |
| e | 0.10 | BSC | 2.54 | BSC | - |
| ${ }^{\text {e }}$ A | 0.60 | BSC | 15.2 | BSC | 6 |
| $\mathrm{e}_{\mathrm{B}}$ | - | 0.700 | - | 17.78 | 7 |
| L | 0.115 | 0.200 | 2.93 | 5.08 | 4 |
| N | 24 |  | 24 |  | 9 |

Rev. 0 12/93

All Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at website www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com

## Sales Office Headquarters

## NORTH AMERICA

Intersil Corporation
2401 Palm Bay Rd., Mail Stop 53-204
Palm Bay, FL 32905
TEL: (321) 724-7000
FAX: (321) 724-7240

## EUROPE

Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05

## ASIA

Intersil Ltd.
8F-2, 96, Sec. 1, Chien-kuo North,
Taipei, Taiwan 104
Republic of China
TEL: 886-2-2515-8508
FAX: 886-2-2515-8369

